If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=20+80t-(-5t^2)
We move all terms to the left:
0-(20+80t-(-5t^2))=0
We add all the numbers together, and all the variables
-(20+80t-(-5t^2))=0
We calculate terms in parentheses: -(20+80t-(-5t^2)), so:We get rid of parentheses
20+80t-(-5t^2)
determiningTheFunctionDomain -(-5t^2)+80t+20
We get rid of parentheses
5t^2+80t+20
Back to the equation:
-(5t^2+80t+20)
-5t^2-80t-20=0
a = -5; b = -80; c = -20;
Δ = b2-4ac
Δ = -802-4·(-5)·(-20)
Δ = 6000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6000}=\sqrt{400*15}=\sqrt{400}*\sqrt{15}=20\sqrt{15}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-80)-20\sqrt{15}}{2*-5}=\frac{80-20\sqrt{15}}{-10} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-80)+20\sqrt{15}}{2*-5}=\frac{80+20\sqrt{15}}{-10} $
| 2x(x-2)=9x^2-5x | | 36x+54-18x=360 | | 4x+300=10x+450 | | q-12=52 | | 0=20+80t-5t2 | | 2*h=16 | | X+8+x-3=2x+6 | | (6x+1)+(5x+19)=180 | | k^2-16k+15=0 | | 40=r+7.6 | | 18x-6x+3x=180 | | -6d+5d=11 | | 13w−6w−7w+5w=10 | | 2/h=16 | | 10x+7(2−x)=2x+14 | | 151/2=x-31/4 | | 4x+2=0.5(12x-20) | | m+3/2m=225 | | (3x+8)^2=9 | | n+19=46 | | 41=11y+36 | | -2(3h+3)-7=7h | | 1/5x+5=19–1/2x | | 6/y-5=28/y+1 | | y+18=90 | | 23(x-7)=-2 | | -20=6z+22 | | -3b+10=-10-7b | | 14-5k=31 | | 9.5-20.7=b | | x-32(2)=15 | | 11.2=20.7-x |